Copied to
clipboard

G = C30.3C42order 480 = 25·3·5

3rd non-split extension by C30 of C42 acting via C42/C2=C2×C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C30.3C42, C3⋊C83F5, C153C85C4, C15⋊C82C4, C6.8(C4×F5), C33(C8⋊F5), C151(C8⋊C4), (C2×F5).Dic3, (C4×F5).2S3, (C6×F5).2C4, C4.24(S3×F5), C20.24(C4×S3), C60.24(C2×C4), (C4×D5).70D6, (C12×F5).3C2, C12.31(C2×F5), C2.4(Dic3×F5), C10.3(C4×Dic3), D5.(C4.Dic3), C60.C4.3C2, C51(C42.S3), D10.6(C2×Dic3), Dic5.10(C4×S3), (C3×D5).1M4(2), (D5×C12).62C22, (C5×C3⋊C8)⋊5C4, (D5×C3⋊C8).8C2, (C6×D5).11(C2×C4), (C3×Dic5).15(C2×C4), SmallGroup(480,225)

Series: Derived Chief Lower central Upper central

C1C30 — C30.3C42
C1C5C15C30C6×D5D5×C12C12×F5 — C30.3C42
C15C30 — C30.3C42
C1C4

Generators and relations for C30.3C42
 G = < a,b,c | a30=b4=1, c4=a15, bab-1=a13, cac-1=a11, cbc-1=a15b >

Subgroups: 308 in 80 conjugacy classes, 36 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, D5, C10, C12, C12, C2×C6, C15, C42, C2×C8, Dic5, C20, F5, D10, C3⋊C8, C3⋊C8, C2×C12, C3×D5, C30, C8⋊C4, C52C8, C40, C5⋊C8, C4×D5, C2×F5, C2×C3⋊C8, C4×C12, C3×Dic5, C60, C3×F5, C6×D5, C8×D5, D5⋊C8, C4×F5, C42.S3, C5×C3⋊C8, C153C8, C15⋊C8, D5×C12, C6×F5, C8⋊F5, D5×C3⋊C8, C12×F5, C60.C4, C30.3C42
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, M4(2), F5, C4×S3, C2×Dic3, C8⋊C4, C2×F5, C4.Dic3, C4×Dic3, C4×F5, C42.S3, S3×F5, C8⋊F5, Dic3×F5, C30.3C42

Smallest permutation representation of C30.3C42
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(2 8 20 14)(3 15 9 27)(4 22 28 10)(5 29 17 23)(7 13 25 19)(12 18 30 24)(32 38 50 44)(33 45 39 57)(34 52 58 40)(35 59 47 53)(37 43 55 49)(42 48 60 54)(61 76)(62 83 80 89)(63 90 69 72)(64 67 88 85)(65 74 77 68)(66 81)(70 79 82 73)(71 86)(75 84 87 78)(91 106)(92 113 110 119)(93 120 99 102)(94 97 118 115)(95 104 107 98)(96 111)(100 109 112 103)(101 116)(105 114 117 108)
(1 91 41 76 16 106 56 61)(2 102 42 87 17 117 57 72)(3 113 43 68 18 98 58 83)(4 94 44 79 19 109 59 64)(5 105 45 90 20 120 60 75)(6 116 46 71 21 101 31 86)(7 97 47 82 22 112 32 67)(8 108 48 63 23 93 33 78)(9 119 49 74 24 104 34 89)(10 100 50 85 25 115 35 70)(11 111 51 66 26 96 36 81)(12 92 52 77 27 107 37 62)(13 103 53 88 28 118 38 73)(14 114 54 69 29 99 39 84)(15 95 55 80 30 110 40 65)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (2,8,20,14)(3,15,9,27)(4,22,28,10)(5,29,17,23)(7,13,25,19)(12,18,30,24)(32,38,50,44)(33,45,39,57)(34,52,58,40)(35,59,47,53)(37,43,55,49)(42,48,60,54)(61,76)(62,83,80,89)(63,90,69,72)(64,67,88,85)(65,74,77,68)(66,81)(70,79,82,73)(71,86)(75,84,87,78)(91,106)(92,113,110,119)(93,120,99,102)(94,97,118,115)(95,104,107,98)(96,111)(100,109,112,103)(101,116)(105,114,117,108), (1,91,41,76,16,106,56,61)(2,102,42,87,17,117,57,72)(3,113,43,68,18,98,58,83)(4,94,44,79,19,109,59,64)(5,105,45,90,20,120,60,75)(6,116,46,71,21,101,31,86)(7,97,47,82,22,112,32,67)(8,108,48,63,23,93,33,78)(9,119,49,74,24,104,34,89)(10,100,50,85,25,115,35,70)(11,111,51,66,26,96,36,81)(12,92,52,77,27,107,37,62)(13,103,53,88,28,118,38,73)(14,114,54,69,29,99,39,84)(15,95,55,80,30,110,40,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (2,8,20,14)(3,15,9,27)(4,22,28,10)(5,29,17,23)(7,13,25,19)(12,18,30,24)(32,38,50,44)(33,45,39,57)(34,52,58,40)(35,59,47,53)(37,43,55,49)(42,48,60,54)(61,76)(62,83,80,89)(63,90,69,72)(64,67,88,85)(65,74,77,68)(66,81)(70,79,82,73)(71,86)(75,84,87,78)(91,106)(92,113,110,119)(93,120,99,102)(94,97,118,115)(95,104,107,98)(96,111)(100,109,112,103)(101,116)(105,114,117,108), (1,91,41,76,16,106,56,61)(2,102,42,87,17,117,57,72)(3,113,43,68,18,98,58,83)(4,94,44,79,19,109,59,64)(5,105,45,90,20,120,60,75)(6,116,46,71,21,101,31,86)(7,97,47,82,22,112,32,67)(8,108,48,63,23,93,33,78)(9,119,49,74,24,104,34,89)(10,100,50,85,25,115,35,70)(11,111,51,66,26,96,36,81)(12,92,52,77,27,107,37,62)(13,103,53,88,28,118,38,73)(14,114,54,69,29,99,39,84)(15,95,55,80,30,110,40,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(2,8,20,14),(3,15,9,27),(4,22,28,10),(5,29,17,23),(7,13,25,19),(12,18,30,24),(32,38,50,44),(33,45,39,57),(34,52,58,40),(35,59,47,53),(37,43,55,49),(42,48,60,54),(61,76),(62,83,80,89),(63,90,69,72),(64,67,88,85),(65,74,77,68),(66,81),(70,79,82,73),(71,86),(75,84,87,78),(91,106),(92,113,110,119),(93,120,99,102),(94,97,118,115),(95,104,107,98),(96,111),(100,109,112,103),(101,116),(105,114,117,108)], [(1,91,41,76,16,106,56,61),(2,102,42,87,17,117,57,72),(3,113,43,68,18,98,58,83),(4,94,44,79,19,109,59,64),(5,105,45,90,20,120,60,75),(6,116,46,71,21,101,31,86),(7,97,47,82,22,112,32,67),(8,108,48,63,23,93,33,78),(9,119,49,74,24,104,34,89),(10,100,50,85,25,115,35,70),(11,111,51,66,26,96,36,81),(12,92,52,77,27,107,37,62),(13,103,53,88,28,118,38,73),(14,114,54,69,29,99,39,84),(15,95,55,80,30,110,40,65)]])

48 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H 5 6A6B6C8A8B8C···8H 10 12A12B12C···12L 15 20A20B 30 40A40B40C40D60A60B
order12223444444445666888···810121212···1215202030404040406060
size115521155101010104210106630···3042210···1084481212121288

48 irreducible representations

dim1111111122222224444888
type++++++-+++-
imageC1C2C2C2C4C4C4C4S3D6Dic3M4(2)C4×S3C4×S3C4.Dic3F5C2×F5C4×F5C8⋊F5S3×F5Dic3×F5C30.3C42
kernelC30.3C42D5×C3⋊C8C12×F5C60.C4C5×C3⋊C8C153C8C15⋊C8C6×F5C4×F5C4×D5C2×F5C3×D5Dic5C20D5C3⋊C8C12C6C3C4C2C1
# reps1111224411242281124112

Matrix representation of C30.3C42 in GL6(𝔽241)

02400000
12400000
00024000
00002400
00000240
001111
,
100000
010000
000010
001000
000001
000100
,
24000000
24010000
002130185185
005628560
000562856
001851850213

G:=sub<GL(6,GF(241))| [0,1,0,0,0,0,240,240,0,0,0,0,0,0,0,0,0,1,0,0,240,0,0,1,0,0,0,240,0,1,0,0,0,0,240,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0],[240,240,0,0,0,0,0,1,0,0,0,0,0,0,213,56,0,185,0,0,0,28,56,185,0,0,185,56,28,0,0,0,185,0,56,213] >;

C30.3C42 in GAP, Magma, Sage, TeX

C_{30}._3C_4^2
% in TeX

G:=Group("C30.3C4^2");
// GroupNames label

G:=SmallGroup(480,225);
// by ID

G=gap.SmallGroup(480,225);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,253,64,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c|a^30=b^4=1,c^4=a^15,b*a*b^-1=a^13,c*a*c^-1=a^11,c*b*c^-1=a^15*b>;
// generators/relations

׿
×
𝔽